

LA-UR-17-20887

Approved for public release; distribution is unlimited.

Title: Uranium Conversion & Enrichment

Author(s): Karpius, Peter Joseph

Intended for: Introductory Course on the Nuclear Fuel Cycle for NA-21 Personnel

Issued: 2017-02-06

Uranium Conversion & Enrichment

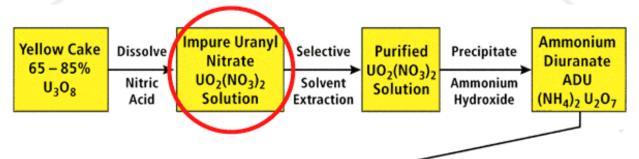
Pete Karpius

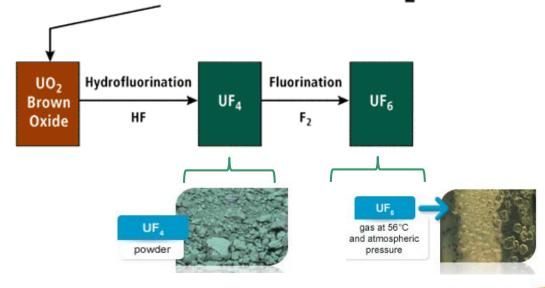
February 2017

Introduction

- The isotopes of uranium that are found in nature, and hence in 'fresh' Yellowcake', are not in relative proportions that are suitable for power or weapons applications.
- The process of obtaining the proper proportions of these isotopes is called enrichment
- Yellowcake is not in a form that is suitable for enrichment methods so the material must first go through a process called 'conversion'

N/SA

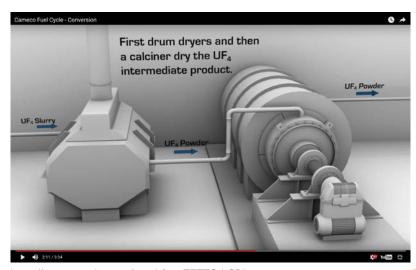

- Enrichment technologies require uranium to be in a gaseous form and not a solid or powder such as U₃O₈ yellowcake
- Uranium Hexafluoride (UF₆) is solid at standard atmospheric pressure but will transform directly to a gas above 134°F (57°C)
 - The direct solid-gas transformation is called 'sublimation'
- The goal of conversion then is to transform the U₃O₈ yellowcake into UF₆


Wet Process Conversion Overview

e.g. at **COMURHEX-Malvési** plant in Narbonne, France.

Calcination and Reduction with H₂

Hydrofluorination $(UO_2 \rightarrow UF_4)$


- Highly corrosive hydrofluoric acid (HF) is used to convert UO₂ to uranium tetrafluoride (UF₄)
 - $UO_2 + 4HF \rightarrow UF_4 + 2H_2O$

The UF₄ slurry is then dried and calcined to

remove all water

UF₄ reacts slowly with water to produce HF

https://www.youtube.com/watch?v=xTFFTQ-bCPI

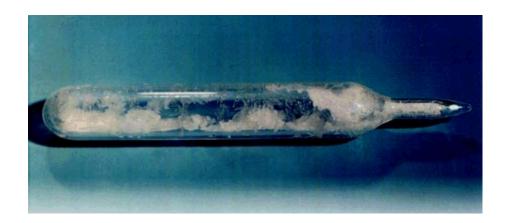
Fluorination (UF₄ \rightarrow UF₆)

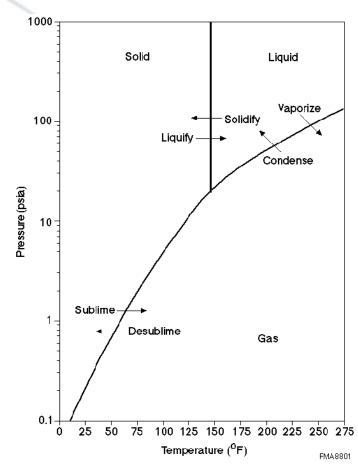
- HF is dissociated via electric current and forms
 H₂ and F₂ diatomic molecules
- UF₆ is made by contact of gaseous fluorine with the UF₄ powder in a flame reactor.

The reaction is exothermic and occurs at very high temperatures

Unburned UF₄ collects at the bottom of the reactor and is re-circulated back into the reactor inlet

UF₆ gas is filtered and then chilled and recovered in crystalline form


http://www.areva.com/EN/operations-757/conversion-the-fluorination-of-uranium-in-2-stages.html



Properties of UF₆

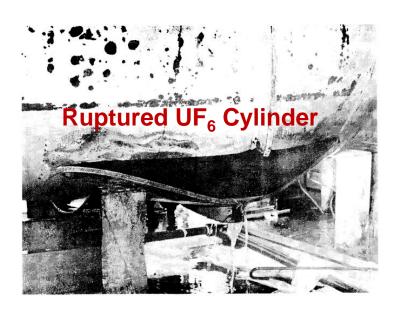
- Solid UF₆ is a white, dense, crystalline material that resembles rock salt
- UF₆ sublimates at standard atmospheric pressure above 134°F (57°C)
- UF₆ reacts with water to form highly corrosive hydrofluoric acid (HF)

http://web.evs.anl.gov/uranium/guide/uf6/propertiesuf6/index.cfm

- Following conversion UF₆ is stored in large robust cylinders
- These cylinders are then transported to enrichment facilities by various means

Type 48Y UF₆ Cylinders

- Used for natural and depleted uranium
- Holds 12,500 kgs of UF₆ (8,450 kgs U)
- A 48Y cylinder filled with natural uranium contains 60.1 kgs of ²³⁵U.
- Nominal wall thickness 16 mm



UF6 Cylinder Rupture

EXECUTIVE SUMMARY

On January 4, 1986, at 11:30 a.m., a Model 48Y cylinder filled with uranium hexafluoride (UF $_6$) ruptured while it was being heated in a steam chest at the Sequoyah Fuels Corporation facility near Gore, Oklahoma. The incident resulted in the death of one plant worker and injuries to several others as a result of exposure to hydrofluoric acid, a reaction product of UF $_6$ and airborne moisture.

Sequoyah Fuels Corporation Gore, Oklahoma:

1 fatality
37 workers hospitalized
21 locals hospitalized
Shut down 1993

https://en.wikipedia.org/wiki/Sequoyah_Fuels_Corporation

https://en.wikipedia.org/wiki/Uranium_hexafluoride

NASSA National Nuclear Security Administration

Who does Uranium Conversion?

Company	Nameplate capacity (tonnes U/yr as UF ₆)	Approx capacity utilisation 2015	Capacity utilisation 2015, tU/yr
Cameco, Port Hope, Ont, Canada	12,500	70%	8750
Springfields Fuels, UK	(closed August 2014)	0%	0
TVEL at Siberian Chemical Combine, Seversk, Russia	12,500	100% assumed	12,500
Comurhex (Areva), Malvesi (UF ₄) & Tricastin (UF ₆), France	15,000	70%	10,500
Converdyn, Metropolis, USA	15,000	70%	10,500
CNNC, Lanzhou, China	5000	unknown	4000
IPEN, Brazil	100	70%	70
World Total	60,100		46,320

http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/conversion-enrichment-and-fabrication/conversion-and-deconversion.aspx

Uranium Enrichment

NISA

- Only three isotopes of uranium are found in nature
 - ²³⁸U (99.27%)
 - ²³⁵U (0.72%)
 - ²³⁴U (0.006%)
- Categories of Enrichment (E = % of ²³⁵U)

Depleted Uranium (DU)E < 0.72 %

Natural Uranium (NU)E = 0.72 %

Enriched Uranium E > 0.72%

Low Enriched Uranium (LEU)0.72% < E < 20.0 %

High Enriched Uranium (HEU)
 E ≥ 20.0 %

Gaseous Diffusion

- 1st generation developed in 1940's
- Least efficient
- Huge footprint and energy requirements

Gas Centrifuge

- 2nd generation developed in 1940's
- Mid efficiency
- Smaller footprint and energy requirements
 - Centrifuge plants only require ~ 5% energy as gas diffusion facilities

Laser Isotope Separation

- 3rd generation developed in the 2000's
- Most efficient
- Potentially smallest footprint and energy requirements

Separative Work Units (SWUs) represent the effort required to separate ²³⁵U from ²³⁸U. SWUs are tallied in kilograms or metric tons

To produce 100 kg with 0.3% tails requires ¹ :				
		Approx. Electricity Required (MW-hr)		
Enrichment	kg SWU Required	Gaseous Diffusion	State-of-the-Art Centrifuge	
3.0%	342	855	17.1	
4.0%	528	1,320	26.4	
20.0%	3,832	9,580	191.6	
90.0%	19,294	48,235	964.7	
3.5 → 20.0%	1,160			
20 → 90.0%	1,848			

¹ Uranium SWU calculator: www.fas.org

http://www.urenco.com/swu-calculator/

The URENCO SWU Calculator

SWU stands for Separative Work Unit.

It is the standard measure of the effort required to increase the concentration of the fissionable ²³⁵U isotope.

Choose your relevant calculator from the list below. Enter the known quantities before pressing the calculate button to see the result.

Calculate Fee	ed and SWU for 1kgU EUP	-		
Product Assay :	3.67 ** %²³⁵U	For 1kgU EUP:		
Tails Assay :	0.3 %²³⁵U	Feed Quantity: 8.2 kgU as UF ₆		
Feed Assay :	0.711 🚔 %²³⁵U	SWU Quantity: 4.656 🕏 SWU		
	Calculate			

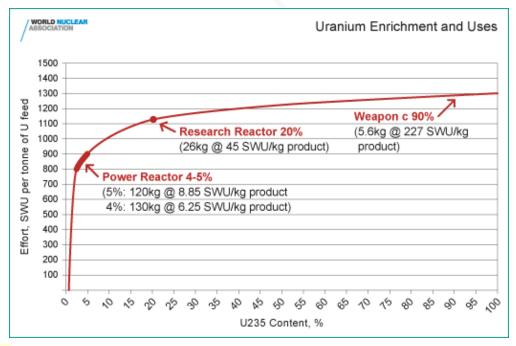
Note that the independent variables do not include energy or \$\$\$

NASSA National Nuclear Security Administration

SWUs and the 20 % Level

Separative Work Unit (SWU): This is a complex unit that

represents the effort that is required to enrich uranium.

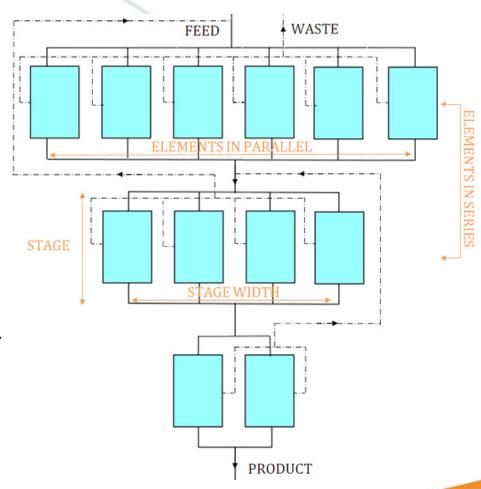

The bulk of the effort is in taking the enrichment from NU to 20 %!

Natanz Pilot Enrichment Plant

Iran is using IR-1 centrifuges in this facility to produce LEU containing approximately 20% uranium-235. Iran is also testing several types of centrifuges in the facility. Iran's production of LEU enriched to this level has caused concern because such production requires approximately 90% of the effort necessary to produce weapons-grade HEU, which, as noted, contains approximately 90% uranium-235. 14

http://fpc.state.gov/documents/organization/234999.pdf

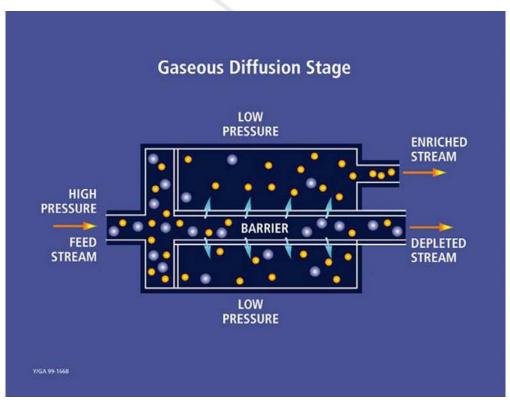
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Uranium-Enrichment/


Enrichment Cascade

A single pass through one stage of a gaseous diffusion or centrifuge process is insufficient to achieve practical levels of enrichment.

Therefore, enrichment stages may be connected in both parallel and series in what is called a 'cascade'.

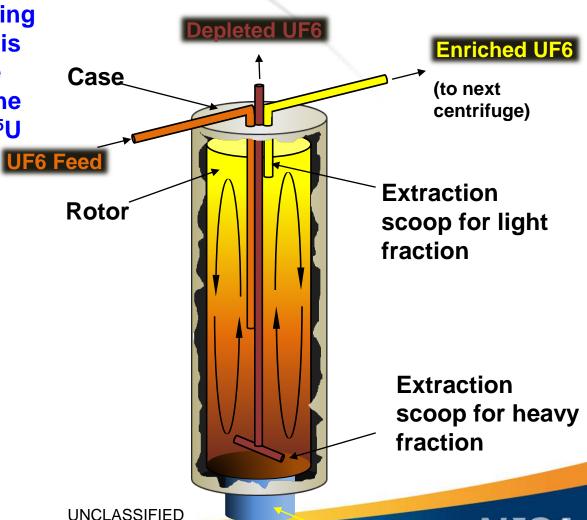
Many cascades may be linked together in a single enrichment facility.



Enrichment: Gaseous Diffusion

In the gaseous-diffusion process UF6 gas is filtered by a semi-porous membrane. The less massive ²³⁵U atoms reach and transit the membrane more easily than ²³⁸U atoms.

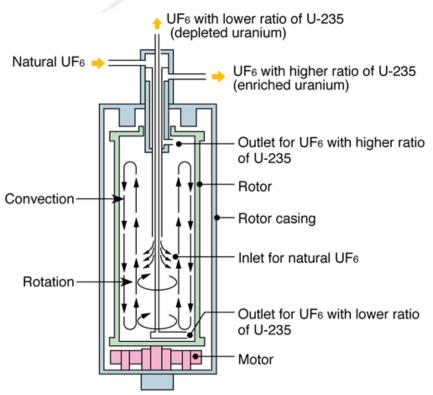
- Used mainly by USA and France
 - Also Russia, China, UK, and Argentina on smaller scales
- E.g. Paducah, Kentucky
 - Produced enriched uranium from 1952 2013
 - Covered 740 acres
 - Peak power usage >3000 Megawatts & > 10 million SWU/yr


Gas Centrifuge

• Los Alamos
NATIONAL LABORATORY
EST. 1943

A gas centrifuge has a spinning rotor within a case. UF₆ gas is fed to the rotor and the more massive ²³⁸U atoms drift to the outside leaving the lighter ²³⁵U atoms in the center.

Thermal gradients induce convection currents, which further aid in the separation of ²³⁸U and ²³⁵U.



Gas Centrifuge Performance

Separative Power $\sim \frac{\pi L}{2} \rho D \left(\frac{\Delta M v^2}{2RT}\right)^2 \eta$

L = Rotor length

ρ= Gas density

D = Coeff. of self-diffusion

 ΔM = Isotope mass Δ

v = Peripheral rotor velocity

R = Universal gas const.

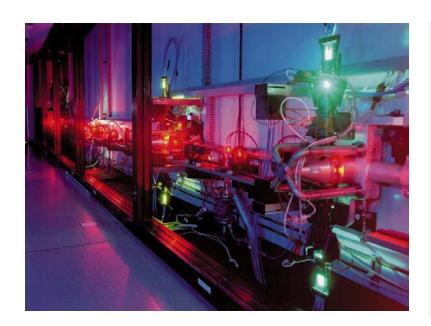
T = Gas temperature

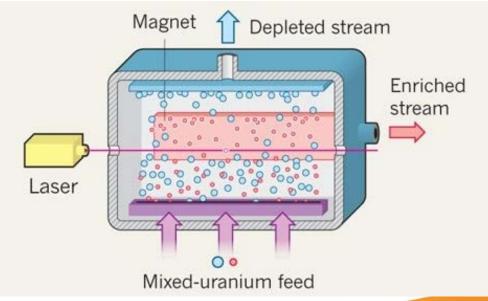
η= Circulation efficiency

Gas Centrifuge Plants

- Operated by :
 - URENCO in UK, the Netherlands, Germany, and USA
 - Areva in France
 - Russia, China, Japan
- Eunice, New Mexico
 - URENCO
 - 3.7 Million SWU/yr*

 Areva is planning to build a 3.3 million SWU centrifuge plant at Eagle Rock in Idaho


*http://www.world-nuclear-news.org/ENF-Celebrations-at-US-centrifuge-plant-1004147.html



Laser Isotope Separation

In laser-isotope separation, a tunable laser excites and ionizes ²³⁵U atoms*. These charged atoms are then collected electrostatically or electromagnetically and separated from the neutral ²³⁸U atoms.

^{*} Or molecules in MLIS

- Even though the interaction is between the laser light and the atomic electrons, it is tuned to ionize based on hyperfine transitions
 - Hyperfine States arise due to interactions between the atomic electrons and the nucleus
 - because the interaction involves the nucleus, the laser can be tuned to a specific isotope and not just an element

Laser Isotope Separation

- The SILEX process was developed in Australia by Dr. Michael Goldsworthy and Dr. Horst Struve, working at Silex Systems Limited, a company founded in 1988*
- General Electric (GE) currently has exclusive rights to use the SILEX laser separation process to enrich natural UF6 gas**
 - SILEX: separation of isotopes by laser excitation
 - On September 25, 2012, NRC staff issued a construction and operating license for the facility.

^{*}https://en.wikipedia.org/wiki/Separation_of_isotopes_by_laser_excitation

^{**}https://www.nrc.gov/materials/fuel-cycle-fac/laser.html

Tails

- Tails are what remain from the enrichment process
- Depleted Uranium
 ~0.25 0.3% ²³⁵U

Depleted UF₆ Cylinder Storage Yard at Portsmouth, OH

<u>Deconversion</u>: chemical removal of the fluorine from UF₆ so that a less-toxic uranium oxide material can be stored as low-level waste

https://www.nrc.gov/materials/fuel-cycle-fac/ur-deconversion.html

- The US Department of Energy (DOE) has agreed to sell around 300,000 tonnes of depleted uranium hexafluoride to GE Hitachi Global Laser Enrichment (GLE) for reenrichment at a proposed plant to be built near DOE's Paducah site in Kentucky.*
- Once the plant is complete it is estimated to take 40 years to enrich the stockpile of tails.

^{**} http://www.world-nuclear-news.org/UF-US-DOE-sells-depleted-uranium-for-laser-enrichment-1111167.html

UF6 Cylinder Types v. Enrichment

Cylinder Model	Nominal Diameter	Maximum UF ₆	Maximum U	Maximum Enrichment	Maximum ²³⁵ U
	inches	kgs	kgs	% ²³⁵ U	kgs
1S	1.5	0.45	0.30	100	0.30
2S	3.5	2.22	1.50	100	1.50
5A/5B	5	24.95	16.9	100	16.9
8A	8	115.7	78.2	12.5	9.8
12A/12B	12	208.7	141.1	5.0	7.1
30B	30	2,277	1,540	5.0	77
48A/X	48	21,030	14,219	4.5	640
48F	48	27,030	18,276	4.5	822
48G	48	26,840	18,148	1.0	181
48Y	48	27,560	18,634	4.5	839
48H/HX/OM	48	27,030	18,276	1.0	183

 ${\it George Eccleston \& Ed Wonder, NMMSS Users Group Meeting, Las Vegas, NV, May 18, 2010}\\$

Who Enriches Uranium?

World Enrichment capacity - operational and planned (thousand SWU/yr)

Country	Company and plant	2013	2015	2020
France	Areva, Georges Besse I & II	5500	7000	8200
Germany-Netherlands-UK	Urenco: Gronau, Germanu; Almelo, Netherlands; Capenhurst, UK.	14,200	14,200	15,700
Japan	JNFL, Rokkaasho	75	1050	1500
USA	USEC, Paducah & Piketon	0*	0	3800
USA	Urenco, New Mexico	3500	5700	5700
USA	Areva, Idaho Falls	0	0	3300?
USA	Global Laser Enrichment	0	0	3000?
Russia	Tenex: Angarsk, Novouralsk, Zelenogorsk, Seversk	26,000	30,000	37,000
China	CNNC, Hanzhun & Lanzhou	2200	3000	8000
Other	Various	75	500	1000?
	Total SWU/yr approx	51,550	61,450	87,200
	Requirements (WNA reference scenario)	49,154	51,425	59,939

http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Uranium-Enrichment/

Iran's Enrichment Facilities*

- Iran has declared enrichment sites at Natanz and Fordow
- It also conducts conversion operations at Isfahan**

Source: New Scientist/ Global Security

**also spelled Esfahan per https://www.state.gov/documents/organization/245318.pdf

^{*}http://www.bbc.com/news/world-middle-east-11927720

DPRK and Uranium Enrichment*

- 2010: Sig Hecker visits DPRK and is shown new enrichment facility at Yongbyon
 - Told there were 2000 centrifuges
- In February 2012, North Korea announced that it would suspend uranium enrichment at Yongbyon, and not conduct any further tests of nuclear weapons while productive negotiations involving the United States
- Restart of facilities occurred in 2013

*http://www.bbc.com/news/world-asia-pacific-11813699

Summary

- Conversion and enrichment of uranium is usually required to obtain material with enough ²³⁵U to be usable as fuel in a reactor or weapon
- The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design
 - Although some approaches lend themselves more easily to proliferation than others

